Odd-degree elements in the Morava K(n) cohomology of finite groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ODD-DEGREE ELEMENTS IN THE MORAVA K(n) COHOMOLOGY OF FINITE GROUPS

For each odd prime p, we construct a finite group P such that K(n)∗(BP ) has non-trivial odd-degree elements for all n ≥ 2.

متن کامل

ON THE CHARACTERISTIC DEGREE OF FINITE GROUPS

In this article we introduce and study the concept of characteristic degree of a subgroup in a finite group. We define the characteristic degree of a subgroup H in a finite group G as the ratio of the number of all pairs (h,α) ∈ H×Aut(G) such that h^α∈H, by the order of H × Aut(G), where Aut(G) is the automorphisms group of G. This quantity measures the probability that H can be characteristic ...

متن کامل

Finite Subgroups of Morava Stabilizer Groups

Introduction The purpose of this paper is to present results from Higher realK-theories and topological automorphic forms by M. Behrens and M.J. Hopkins, and to indicate a direction in which these results may be extended in future work. The first section of this paper introduces basic algebraic geometry constructs which we hope to apply to the problem addressed by Behrens and Hopkins. In the se...

متن کامل

The Tensor Degree of a Pair of Finite Groups

In this paper, we study the tensor commutativity degree of pair of finite groups. Erdos introduced the relative commutativity degree and studied its properties. Then, Mr. Niroomand introduced the tensor relative commutativity degree, calculated tensor relative degree for some groups, and studied its properties. Also, he explained its relation with relative commutativity degree. In this paper, w...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2000

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(99)00031-0